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SUMMARY 
Background 
 
Cardiorespiratory fitness is important for health, work, and athletic 
performance. Laboratory tests of maximal oxygen uptake (VO2max) are the 
gold standard for assessing this aspect of fitness. VO2max protocols 
with small measurement errors will provide the best estimates of 
relationships between fitness and its antecedents and consequences. 
For example, tests with smaller errors will provide better indications 
of how well running tests function as substitutes for laboratory 
tests. 
 
Objective 
 
Published studies of the reliability of VO2max tests provide an 
empirical basis for estimating VO2max test precision. This review 
employed meta-analysis procedures to model VO2max test precision. 
 
Approach 
 
Studies of the test-retest reliability of VO2max protocols were 
identified from previous reviews and searches of computerized 
databases for biomedical, behavioral, and sports research. Of 51 
studies identified, 12 were dropped because long test-retest intervals 
made it likely that true VO2max values changed during the study. The 
reported means, standard deviations, and test-retest correlations were 
used to compute the standard error of measurement (SEM) for VO2max for 
the remaining 39 studies. The age and gender composition of the sample 
were coded along with the exercise mode (treadmill, cycle ergometer, 
other) and the test-retest interval for the protocol. Meta-analysis 
produced a predictive model for SEM based on sample and protocol 
attributes. 
 
Results 
 
Average SEM was 2.58 ml·kg-1·min-1. SEM was higher in samples with 
higher average VO2max. Age, gender, test interval, and exercise mode 
were not related to SEM. After allowing for outliers, the final model 
to predict SEM was ln(SEM) = 0.661 + (.006 * VO2max). 
 
Conclusions 
 
SEM increases as the average VO2max of the sample increases. Other 
population and protocol attributes were not related to SEM. The 
potential applications of the model for SEM include evaluating new 
VO2max protocols, evaluating field tests (e.g., run tests, walk tests), 
and making allowances for measurement error when investigating the 
relationships of VO2max with other variables.   
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Introduction 
 

Cardiorespiratory fitness is important for health and work and 
athletic performance. Maximal oxygen uptake (VO2max) is the accepted 
indicator of this physical capacity. Laboratory tests that directly 
measure oxygen uptake during heavy physical exertion are the gold 
standard for VO2max measurement. These tests, which can be performed on 
treadmills or cycle ergometers, involve technical and performance 
factors that can introduce measurement errors (Howley, Bassett, & 
Welch, 1995). This paper summarizes the empirical evidence regarding 
the size of those errors. 

 
Measurement error biases empirical estimates of relationships 

between VO2max and other variables. The bias produces estimated 
associations that are less than the true population relationships 
(Nunnally & Bernstein, 1994). The technical term for this 
underestimation is attenuation due to measurement error. Better 
estimates of population parameters can be obtained by adjusting for 
this attenuation. The magnitude of error must be known to make the 
necessary corrections. 

 
This review examines the measurement error for VO2max tests when 

the results are expressed as milliliters of oxygen uptake per kilogram 
of body weight per minute (ml·kg-1·min-1). Meta-analysis provides a 
model to predict SEM based on the pooled evidence from available 
studies.  

 
Methods 

 
Data Sources 
 
 The PUBMED® computer database was searched to identify relevant 
studies. The search keywords were reliability or reproducibility 
combined with maximal oxygen uptake or VO2max. The resulting set of 
articles was augmented with citations from Safrit, Hooper, Ehlert, 
Costa, and Patterson (1988) and Hopkins, Schabort, & Hawley (2001). 
The references in the articles identified in these first 2 steps were 
examined to identify additional studies. 
 

The studies in this review met three criteria. First, oxygen 
uptake was expressed in units of ml·kg-1·min-1. This size-adjusted 
expression is the most common index of cardiorespiratory capacity in 
studies of health and performance. Second, the study reported SEM or 
sufficient information to compute SEM (i.e., the standard deviation 
and rxx or intraclass correlation [ICC] for VO2max). Third, the test-
retest interval was no more than 3 weeks.1 

                                                 
1Twelve studies met the first two criteria but had retest intervals longer 
than 5 weeks. Preliminary analysis indicated that SEM was much larger in 
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Table 1. Descriptive Data 
 
 Mean Median Minimum Maximum  
Age 30.3 27.2 9.8 79.8 
VO2max 45.3 46.2 13.1 68.5 
Reliability (rxx)a .890 .909 .620 .970 
SDtb 5.68 5.55 1.52 9.50 
SEMc 2.64 2.53 1.30 5.00  
 
Note. Table entries are the weighted statistics for the raw data. 
Sample size was the weighting factor. Values for rxx, SEM, and SDt 
reported in the text may differ from these because the raw data were 
transformed to approximate normal distributions before analysis. 
aTest-retest reliability coefficient. 
bStandard deviation of true scores. 
cStandard error of measurement. 
  

Thirty-one (31) studies covering 39 samples with 745 total 
participants met these criteria. The studies included 29 treadmill, 8 
cycle ergometer, and 2 miscellaneous (e.g., tethered swimming) 
protocols. The protocols included 500 treadmill tests, 187 cycle 
ergometer tests, and 58 miscellaneous tests. 
 
Coding Procedures 
 
 The mean and standard deviation for each test administration and 
the correlation between scores (i.e., rxx) were recorded when reported. 
When raw data were reported, statistics in the paper were confirmed by 
repeating the basic data analysis. When the ICC was reported, ICC and 
the number of test administrations (k) were entered into the Spearman-
Brown formula, rICC = krij/(1+rij) where rij is the average correlation 
between VO2max values for the ith and jth test administrations (Ghiselli, 
Campbell, & Zedeck, 1981, p. 232). The formula was solved for rij, 
which then was the study estimate of rxx. 
 

Additional information was extracted to examine factors that 
might modify SEM. Gender, age, and VO2max were recorded as sample 
attributes that might indicate limits on the generalizability of SEM 
(see Table 1). Study design attributes were recorded to identify 
methodological factors that could be controlled to minimize SEM. 
Exercise mode coded as treadmill (k = 29 samples, N = 500 cases), 
cycle ergometer (k = 8, N = 187), and other (k = 2, N = 58).2 Only 27 

                                                                                                                                                             
those studies than in the 39 studies retained for analysis. Changes in true 
VO2max would be one possible explanation for the large errors. Dropping these 
studies helped ensure that the review evaluated protocol performance without 
the confounding effects of changes in VO2max.  
2The initial study plan for the review included coding protocol attributes 
(e.g., how initial work rate was determined, frequency and size of work rate 
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studies provided enough information to estimate test-retest interval. 
Typical descriptions referred to a range of times (e.g., “7 to 10 
days,” “7 or more days”) between tests. This practice no doubt 
reflects the difficulty of maintaining precise scheduling when 
participants must return to the laboratory more than once. When a 
range was given, the midpoint of the range was recorded. When only a 
lower bound was given, this minimum value was recorded. The initial 
interval estimates were recoded into categories: “<1 week” (k = 9; N = 
177), “7–10 days” (k = 11, N = 221), and “2–3 weeks” (k = 7; N = 134). 
Test interval could not be determined for 12 samples (N = 213). A 
missing data value was entered for those samples. 
 
Analysis Procedures 
 
 SEM and SDt were computed as follows: 
 
 SEM = √(1 – rxx2)*SDVO2max 
 SDt = rxx*SDVO2max 
 
These variance components and rxx were transformed to obtain normal 
distributions with known variances (Raudenbush & Bryk, 2002, p. 219, 
for the conversion formulae). The meta-analyses were conducted by 
applying standard regression and general linear model procedures 
(SPSS, Inc., 1998a, 1998b) to the transformed variables. In these 
analyses, the transformed variance component or correlation was 
weighted by the inverse of its known variance. Given this weighting, 
the sum of squares from the analyses provided Hedges’s Q (Hedges & 
Olkin, 1985, pp. 241-242). The Q statistic has a χ2 distribution with k 
– 1 degrees of freedom (df) where k is the number of correlations or 
variance estimates being analyzed. 
 

Preliminary analyses established two facts that affected 
decisions regarding the results reported here. First, the mean and 
standard deviation of the initial VO2max test was an acceptable estimate 
of these statistics for both test administrations (Appendix A). 
Second, rxx was substantially lower and SEM substantially higher when 
more than 3 weeks elapsed between tests. This difference was expected 
because testing conditions could change over the longer intervals. 
Possible changes include alterations in true VO2max scores. The 
possibility of substantial changes in the person, the laboratory 
equipment, seasonal effects on physical activity and other factors 
would introduce major elements of uncertainty into attempts to 
evaluate SEM. Based on these preliminary analyses, the results 
reported here are based on the mean and standard deviation from the 
first test session for studies with test intervals ≤3 weeks. 
 
 
                                                                                                                                                             
increments, criteria for a valid VO2max). Protocol details were missing from 
too many studies to support the planned analysis.  
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Table 2. Categorical Predictors of Reliability and Precision 
 
 SDt SEM rxx 
Test interval 
  <7 days 5.39 2.56 .905 
  7-10 days 4.89 2.65 .883 
  2-3 weeks 5.58 3.00 .887 
   
 χ2 3.06 3.65 1.06 
 p value .216 .161 .588 
  
Exercise mode 
  Cycle ergometer 6.50 2.47 .936  
  Treadmill 5.15 2.59 .897  
  Other 6.67 2.87 .920  
 
  χ2 17.06 1.96 7.71 
 p value .001 .375 .022 
 
Gender 
  Missing 4.77 2.71 .875 
  Male 6.27 2.71 .920 
  Female 3.87 1.94 .898 
  M + F 7.20 3.58 .896 
 
  χ2 50.46 30.83 4.37 
 p value .001 .001 .225 
 
 
  

Results 
 
Bivariate Relationships 
 

Test Interval. SEM increased slightly, but consistently, as the 
interval between tests increased, but the trend was not statistically  
significant (χ2 = 3.65, 2 df, p > .161). SDt was not related to test 
interval (χ2 = 3.06, 2 df, p > .216). Test-retest reliability, rxx, did 
not vary (χ2 = 1.06, 2 df, p > .588). 

 
 The estimates of test interval effects may be biased. Studies for which 
interval could not be estimated had higher average SDt (6.62 ml·kg-1·min-1) 
and lower average SEM (2.28 ml·kg-1·min-1) compared with studies with 
interval data. Test-retest reliability was higher reliability (rxx = 
.946). The differences were statistically significant (p < .001 for 
each). The missing data would bias the estimates of interval effects 
if the studies with missing data all had approximately the same 
interval. The direction and magnitude of the bias would depend on 
where the cluster was located on the time continuum. 
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Exercise Mode. SEM was not related to exercise mode (χ2 = 1.96, 2 df, p 
> .375). SDt was lower for cycle ergometer protocols than for treadmill 
and other protocols (χ2 = 17.06, 2 df, p < .001). Combining these 
trends produced small, but statistically significant differences in rxx 
(χ2 = 7.71, 2 df, p < .001). 
 

Gender. SEM was larger for males (2.71) than for females (1.94; 
χ2 = 22.03, 1 df, p < .001). SDt was greater in samples of male (SDt = 
6.27) than in samples of females (SDt = 3.87; χ2 = 46.03, 1 df, p < 
.001). These opposite trends combined to yield comparable rxx values 
for men and women (χ2 = 1.62, 1 df, p > .204). 
 
 Age. Age was not related to SEM (r = -.15, χ2 = 2.86, 1 df, p > 
.090) or SDt (r = .12, χ2 = 1.77, 1 df, p > .183). These weak opposing 
trends produced increasing rxx with age (r = .27, χ2 = 4.10, 1 df, p < 
.043).  
 
 VO2max. VO2max was positively related to SEM (r = .35, χ2 = 16.59, 1 
df, p < .001), but was not related to SDt (r = .02, χ2 = 0.04, 1 df, p 
> .841). The combined trends produced a negative relationship between 
rxx and VO2max (r = -.31, χ2 = 6.07, 1 df, p < .014). 
 
Multivariate Model for SEM 
 
 The general linear model routine of SPSS-PC was used to combine 
VO2max and gender, the significant bivariate correlates of SEM, into a 
multivariate model. Each variable contributed independently to the 
prediction of SEM (VO2max, χ2 = 5.94, 1 df, p < .015; gender, χ2 = 13.44, 
1 df, p < .001). The regression formula was  
 

ln(SEM) = 0.985 + (.006* VO2max) – (.275* Gender) (Equation 1) 
 

Sensitivity Analysis 
 

Meta-analysis should attempt to evaluate the sensitivity of the 
results to assumptions embedded in the analysis (National Research 
Council, 1992). The potential bias associated with missing time 
interval data has been alluded to previously. The construction of the 
multivariate model therefore was followed by exploration of several 
factors that might have affected the content and structure of the 
model. 

 
Gender Coding. The assumptions made in coding gender might have 

affected the model. Perhaps gender was less likely to be reported when 
the sample was composed of males. This assumption could be valid if 
male gender was an implicit default value in this research domain. 
Samples with missing data were reclassified as male to test this 
possibility.  
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The reclassification had little effect. Both gender and VO2max 

were significantly related to SEM. The regression slope for VO2max was 
unchanged. The slope for gender was .003 smaller. The intercept was 
.011 larger. These changes were reasonable given that the average 
values of SEM, SDt, and rxx for the samples with missing data were very 
similar to the average values for male samples. 

 
Additional Female Data. The modest amount of data available for 

females was a second concern. The evidence included only 6 samples of 
women. Data from Katch, Sady, and Freedson (1982) were added to 
increase the total number of observations for women. That study 
included an intensive investigation of 4 women. Each of these four 
women completed between 10 and 21 tests with at least 1 day between 
tests. Each woman completed her series of tests in 2 to 4 weeks. The 
Katch et al. (1982) data had not been included in the analyses to this 
point because the set of tests for each woman comprised a time series. 
Correlations between errors could occur that would lead to 
underestimation of error variance (Ostrom, 1990). The possible lack of 
independence between observations also raises special statistical 
problems in meta-analysis (Becker & Schram, 1994). However, the data 
were used in this sensitivity analysis because the primary objective 
was to improve the estimate of average SEM rather than to make 
statistical inferences.  

 
The unweighted average mean squared error for the four series was 

3.2 ml·kg-1·min-1. This value was larger than the estimated average SEM 
for women in the 6 test-retest studies. In fact, this error was larger 
than the estimated value for men. Adding these data, the estimated SEM 
for females increased from 2.02 ml·kg-1·min-1 to 2.30 ml·kg-1·min-1. 
Although statistical inferences based on these data must be viewed 
with caution, it is worth noting that the gender difference still 
would be statistically significant (χ2 = 3.90, 1 df, p < .049) if the 
measurement errors were treated as independent from session to 
session. 
 
 Outlier/Influential Data Points. A point noted when coding the 
data was examined next. The standard deviation of VO2max had been coded 
in two prior reviews of VO2max as a predictor of running performance 
(Vickers, 2001a, 2001b). The distribution of standard deviations 
indicated a typical standard deviation of ~6.00 ml·kg-1·min-1. Very few 
values were <3.00 ml·kg-1·min-1 or >9.00 ml·kg-1·min-1. Thus, a small 
sample of studies such as that covered in this review should include 
very few standard deviations beyond the range from 3 to 9 ml·kg-1·min-1. 
Other things equal, values outside this range would produce extreme 
SEM values.  
 

Analysis of the standard deviations from the prior reviews 
(Vickers, 2001a, 2001b) gave reason to believe the current set of 
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studies was not broadly representative of men and women. The samples 
in this review accentuated a gender difference evident in the larger 
body of evidence. The male standard deviation was larger than expected 
(SD = 6.77 ml·kg-1·min-1 vs. SD = 6.16 ml·kg-1·min-1, χ2 = 59.95, 26 df, p 
< .001). The female standard deviation was smaller than expected (SD = 
4.31 ml·kg-1·min-1 vs. 5.66 ml·kg-1·min-1, χ2 = 26.52, 6 df, p < .001). 
The gender difference in the data reviewed here was 5 times what would 
generally be expected (2.46 ml·kg-1·min-1 vs. 0.50 ml·kg-1·min-1). This 
trend produced a larger χ2 for the male-female difference in the review 
data than in the larger body of evidence (χ2 = 22.03 vs. χ2 = 16.07) 
despite the smaller cumulative sample size in the present data.  

 
The weighted average standard deviation for VO2max was computed 

for 121 samples of men and 51 samples of women in the prior reviews. 
The average standard deviations for men and women then were the points 
of reference for computing z-scores for the studies in this review 
(i.e., [ln(Sample SD) – ln(Average SD)]*2f; f = N – 1, cf., Raudenbush 
& Bryk, 2002, p. 219). The computations produced │z│ > 3.00 for 6 
studies. This frequency was >56 times the number that would be 
expected by chance. These samples, therefore, could be classified as 
outliers (Barnett & Lewis, 1978). Further analyses were undertaken to 
determine the impact of the outliers on the prior analysis findings 
(cf., Belsley, Kuh, & Welsch, 1980; Stevens, 1984). 
 

The extreme values were not randomly distributed. Three of six 
female samples produced z < -3.00. For males, two samples produced z > 
3.00; one sample yielded z < -3.00. In the context of this study, the 
extreme standard deviations strongly suggested that SEM might be 
underestimated for women. The implications for men were less clear, 
but it was possible that SEM was overestimated for males. 
 

Each gender analysis described above was repeated after removing 
the extreme samples. When this was done, men and women had virtually 
identical SEM values (χ2 < 0.40). The removal did not affect the VO2max-
SEM relationship. This association remained positive and statistically 
significant. 

 
 Re-examination of Exercise Mode. The effect of exercise mode on 
SEM was reexamined to complete the sensitivity checks. The question 
was whether exercise mode was related to SEM controlling for VO2max and 
gender. This analysis was not based on any prior finding. The question 
was posed to check on a logical possibility that would be important if 
true. The initial analysis covered all of the exercise modes. The 
analysis was repeated for the subset of studies involving either the 
treadmill or cycle ergometer protocols. In each analysis, the χ2 for 
exercise mode was less than would be expected by chance (i.e., χ2/df < 
1.00). 
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Revised Model 
 
 The sensitivity analyses suggested that the gender effects in 
Equation 1 were questionable. Therefore, a final predictive model for 
SEM was constructed with VO2max as the only predictor. The model was  
 
 ln(SEM) = 0.531 + (.009 * VO2max)      (Equation 2a) 
 
This equation yields SEM = 2.23 when VO2max = 30 ml·kg-1·min-1, SEM = 
2.67 ml·kg-1·min-1 when VO2max = 50 ml·kg-1·min-1, and 3.19 ml·kg-1·min-1 

when VO2max = 70 ml·kg-1·min-1. When the samples with exceptional 
standard deviations were removed, the equation was  
 
 ln(SEM) = 0.661 + (.006 * VO2max)      (Equation 2b) 
 
The relationship to VO2max remained significant (r = .23, χ2 = 4.43, 1 
df, p < .036). The revised equation yields SEM estimates of 2.32 when 
VO2max = 30 ml·kg-1·min-1, 2.61 when VO2max = 2.67 at 50 ml·kg-1·min-1, and 
2.95 when VO2max = 70 ml·kg-1·min-1. Equation 2b can be seen as a robust 
version of Equation 2a because the outlier data points have been given 
less weight (Rousseeuw & Leroy, 1987). 
 

Discussion 
 

 This review of the available evidence regarding the measurement 
precision of VO2max tests provides a basis for addressing several 
general issues. First, the review produced reasonably firm conclusions 
about some factors that might influence precision. Second, the review 
defined some topics for continuing research by showing that additional 
evidence is needed to reach conclusions about other factors that might 
affect precision. Third, the review produced a simple model for 
estimating precision in studies that lack repeated measures. SEM 
estimates from this model can be useful when evaluating findings from 
past and future studies. Finally, the evidence illustrated that the 
standard error for a test should be the preferred statistical index of 
test performance. These points are discussed below.  
  
 Firm conclusions could be reached regarding 3 factors that might 
influence the precision of VO2max measurements. Two findings are 
negative. Age does not affect precision. Treadmill and cycle ergometer 
tests have equal precision. The third finding provides the basis for a 
model to estimate SEM. Precision is lower when VO2max is higher. Results 
obtained from the analysis of sample statistics must be extrapolated 
to individuals to reach this third conclusion, but the extrapolation 
seems reasonable. The applied uses of a model based on these 
conclusions are considered after summarizing the negative findings.  
 

The evidence regarding 3 other potential influences on VO2max test 
precision was ambiguous. Outliers made it impossible to estimate 
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gender effects with precision. Lack of replication made it impossible 
to decide whether tests involving alternative exercise methods (e.g., 
tethered swimming) produced larger than average SEM values. Two 
methods have been tested and both produced larger than average SEM 
values. Neither result has been replicated to date. Also, those two 
methods are not necessarily representative of the universe of 
alternatives to treadmill and cycle ergometry protocols. Finally, SEM 
probably increases as the time between measurements increases, but 
this position cannot be adopted with certainty. The weak time trend 
shown in Table 1 and preliminary analyses showing larger SEM values in 
studies with intervals in excess of 5 weeks support the presence of a 
time effect. However, time interval could not be coded for a subset of 
studies. The studies in that subset had small SEM values. Their 
distribution along the time dimension could dramatically affect any 
temporal trend.  

 
The established facts generate a simple model of VO2max test 

precision. Precision decreases as VO2max increases. Application of the 
model involves two steps. First, compute the natural logarithm of SEM, 
ln(y) = 0.661 + (.006 * VO2max). Second, compute the estimated SEM, SEM’ 
= exp(y). The areas of uncertainty discussed in the preceding 
paragraph make it likely that this simple model is incomplete. There 
is a strong likelihood that a complete model would include time 
interval between measurements. It is less likely, but still possible, 
that a complete model also would include gender. However, the current 
model is based on the only association definitely supported by the 
available evidence. 
  

The SEM estimates derived from the predictive model provide a 
frame of reference for evaluating 2 types of research results. The 
first type evaluates methods of assessing cardiorespiratory fitness. 
In this context, the model estimates provide a benchmark for new VO2max 
protocols. When a new protocol is being evaluated, Equation 2b can be 
applied to estimate the treadmill or cycle ergometer SEM for the study 
sample. The observed SEM can be compared with the estimate by 
computing z = (SEM – SEM’)*(2N-4) (cf., Raudenbush & Bryk, 2002, p. 
219). Standard statistical criteria (p < .05, one-tailed) can be 
applied to decide whether the SEM for the new protocol exceeds that 
for the reference standards. The model predictions also can have a 
role in the validation of field tests of cardiorespiratory fitness. In 
this context, VO2max test results can be regressed on field test 
performance (e.g., run time) to obtain a standard error of estimate 
(SEE). If the z-score computations show that the field test is less 
precise than the laboratory test, as would be expected, the increase 
in error associated with the field test can be estimated by computing 
√(SEEField2 – SEMLab2).  
 

The second general application of the SEM model involves 
correcting for the effects of measurement error when studying 
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relationships between VO2max and other variables. SEM’ estimates from 
Equation 2 can be used to compute rxx = (1 – SEM’2/SD2). Inserting the 
computed rxx into the formula ρxy = rxy/√rxx provides an estimate of the 
true population correlation, ρxy, by correcting the observed 
correlation, rxy, for unreliability of x variable, VO2max. The 
computation treats the y variable as though it were measured without 
error (i.e., ryy = 1.00). By doing so, the correction focuses 
specifically on the effects of measurement errors in VO2max. The 
correction is not limited to correlational studies. Similar 
adjustments can be applied to a wide range of analysis procedures by 
transforming group differences into effect size estimates comparable 
to rxy. For example, the difference between two groups in an experiment 
can be expressed as a point biserial correlation (cf., Hedges & Olkin, 
1985). The effects of these corrections can be substantial (Appendix 
D). 

 
The potential applications of SEM estimates are important. For 

example, consider a study relating VO2max to some other variable (e.g., 
a training method, an ergogenic aid) in a small sample of endurance 
athletes. The true effect size is likely to be underestimated. 
Selection processes that determine who becomes an endurance athlete 
are likely to cause true differences in VO2max to be smaller than in the 
general population. At the same time, the high average level of VO2max 
implies higher than average SEM. The combination of restricted true 
score variance and large error variance will yield attenuated 
estimates of associations between VO2max and other variables. Tests of 
statistical significance that combine small effect sizes with small 
samples have low statistical power and are not likely to reject the 
null hypothesis. Even moderate to strong true effects can fail to 
reach statistical significance under these conditions. Using the SEM 
model to estimate the effect of measurement error in such a study 
could reduce the risk of dismissing promising lines of work 
prematurely. 

  
The review findings also demonstrated that SEM is preferable to 

other statistical indices when evaluating the measurement 
characteristics of VO2max protocols. A distinction between absolute and 
scaled indices of test performance is the key issue here. SEM 
quantifies the reproducibility of individual VO2max values in absolute 
terms. SEM is the average expected error. Other widely used statistics 
scale SEM by expressing it relative to some sample characteristic. 
Scaling is most evident for the coefficient of variation (CV). CV 
expresses SEM as a percentage of average VO2max (i.e., CV = 
SEM/Average*100). Test-retest reliability, rxx, scales SEM relative to 
the sample standard deviation. This reliability index is defined as 
the ratio of true score variance to total variance (i.e., rxx = 
SDt2/SD2; Nunnally & Bernstein, 1994). Because SD2 = SDt2 + SEM2, it is 
also true that rxx = 1 – SEM2/SD2. Thus, rxx scales SEM relative to the 
sample standard deviation. Both rxx and CV are composite statistics in 
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that each combines SEM with a sample characteristic. The analysis of 
SDt in this review demonstrated that the sample characteristics 
sometimes are associated with factors when SEM is not (cf., Table 1). 
The discussion of Equation 2 showed that, in the present data, CV can 
decrease when SEM is increasing. In both cases, variations in the 
composite indices are a poor guide to the precision of test scores. In 
the final analysis, experts regard reproducibility of test results as 
the essence of reliability (e.g., American Psychological Association, 
1994). SEM is the best index for assessing reliability because it 
separates test precision from population attributes. 

 
 The volume and quality of evidence must be considered when 
evaluating the points made in this discussion. Publication bias occurs 
when only statistically significant results are published (National 
Research Council, 1992). This practice inflates parameter estimates 
because studies that produce smaller values are missing from the 
published record. This form of bias is unlikely in the present case. 
In this domain, significance tests would be expected to evaluate the 
null hypothesis that rxx = .00. Given the average value of rxx for the 
studies reviewed here (i.e., rxx = .91) and a sample size of 15 (i.e., 
the median for the studies reviewed), the null hypothesis will be 
rejected 99.99% of the time. Publication bias therefore does not 
appear likely to have had a major effect on the present findings. 
 

Another trend in the evidence may appear to be a cause for 
concern. The analyses identified 15% of the studies as outliers. This 
rate is not exceptional. Outliers commonly comprise 10% to 20% of the 
data in fields as diverse as behavioral research and particle physics 
(Hedges, 1987; Hedges & Olkin, 1985). Furthermore, the conclusions 
drawn from the evidence have taken account of the outliers. The 
evidence regarding gender effects was treated as inconclusive because 
the outlier data points affected this element of the analyses. 
 
 To summarize, this review provided a simple model of the 
measurement precision (i.e., SEM) of VO2max tests. The model is probably 
incomplete, but it represents the combined evidence from available 
studies of VO2max reliability. Further research on the effects of time 
interval between tests and gender differences in SEM could refine this 
initial model. The model generates SEM estimates that can be used as 
benchmarks when evaluating new VO2max protocols. The SEM estimates also 
can be applied to correct for measurement error when estimating 
associations between VO2max and other variables. From a statistical 
perspective, the evidence indicates that SEM provides a better 
indication of test performance than rxx or CV when evaluating VO2max 
protocols. This summary sketch of the available evidence can be a 
framework for future studies of the measurement properties of VO2max 
protocols. 
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Appendix B 
Data Coded from Studies 

 
Table B-1. Descriptive Data  
 
 Sr. Author    1 2 3 4  5     6     7   8   9     10 
Aunola        33 1 1 2 33.0  7.8  177  4.9 75.6  7.5 
Babcock       79 1 1 . 50.1 13.9  180  6.0 83.9 12.2 
Bar-Or        41 1 3 3 28.2  8.8  174  9.8 70.8 13.2 
Boileau       21 1 2 2 12.8  1.1  159 13.3 49.1 12.8 
Boileau       21 1 1 2 12.8  1.1  159 13.3 49.1 12.8 
Brandon       26 1 2 . 26.7  4.4  178  4.6 69.5  7.9 
Braun         12 1 1 4 21.9  1.8  178 11.9 72.6  8.3 
Conley        12 . 1 . 68.8  5.9   .    .  72.1  2.1 
Cunningham 76 15 1 1 1 10.6   .3  141  5.6 35.5  5.4 
Cunningham 77 66 1 2 4 10.4   .3  140  6.5 33.5  5.3 
De Meersma     9 1 1 4 20.0   .    .    .    .    . 
De Vito        6 1 2 2 27.0  5.0  176  8.0 69.0  9.0 
Farrell       18 1 2 . 28.0  9.0  180  6.7 70.2  8.1 
Fielding      17 2 2 2 59.0  4.1  162  4.5 62.5  8.2 
Foster         8 2 2 2 79.8  4.6  159  3.9 58.4  8.0 
Froehlicher    15 . 2 3 32.0   .   178   .  78.0   . 
Froehlicher    15 . 2 3   .    .   178   .  78.0   . 
Froehlicher    15 . 2 3   .    .   178   .  78.0   . 
Harrison 1      9 1 2 4 31.0   .  71.2   .  69.9   . 
Harrison 2      5 1 2 2 31.1   .    .    .    .    . 
Harrison 3      9 1 2 .   .    .    .    .    .    . 
Harrison 4     10 1 2 1   .    .    .    .    .    . 
Hazard         7 2 2 3 18.4  1.1  164  4.1 48.8  3.1 
Hazard        21 1 2 3 19.0  2.3  175  5.1 61.2  7.2 
Huhn          20 1 2 1 25.9  2.8  179  7.1 72.2  7.4 
Jackson      156 1 2 4 45.6  5.0   .    .  82.3 13.6 
Jackson       43 2 2 4 44.2  8.9   .    .  63.4 12.0 
Katch         36 2 2 2 20.8  1.4  163  6.6 58.9  6.8 
Kohrt         13 1 2 . 29.5  4.8   .    .  69.8  5.6 
Kohrt         13 1 1 . 29.5  4.8   .    .  69.8  5.6 
Kyle          17 1 2 1 31.9  4.6  181  6.3 78.0  9.7 
Laukkanen     25 1 2 4 41.4   .    .    .  80.8  9.3 
Laukkanen     26 1 2 4 41.4   .    .    .  84.0 10.4 
Laukkanen     28 2 2 4 40.9   .    .    .  66.8  8.9 
Laukkanen     29 2 2 4 40.9   .    .    .  68.6  8.6 
MacSween      25 3 2 1 28.6  7.3  173 10.0 69.8 13.8 
Magel         17 . 3 1 19.8  1.0  181  6.1 76.7  7.4 
McArdle       41 2 2 1 20.9  1.3  163  6.0 58.2  6.9 
Miller         5 1 1 . 26.7  5.8  178  5.3 73.9  7.1 
Montgomery    10 . 2 . 24.8  4.0  172  7.1 75.1 15.9 
Paterson       8 1 2 1 11.4   .   147  7.4 36.9  7.5 
Pawelcyzk     10 3 . 4 22.8  3.3  176 10.1 71.7 17.1 
Pivarnik      32 2 2 2 13.7  1.5  157  6.0 53.7  9.3 
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Table B-1. Descriptive Data (continued) 
 
Sr. Author    1 2 3 4  5     6     7   8   9     10 
Shaver        10 1 2 . 22.5  3.2  173  6.7 75.5 13.3 
Sproule       20 1 2 3 23.0  3.3  171  8.3 60.8  7.8 
Thomas        24 1 2 1 61.7   .   175   .  78.7   . 
Turley         9 3 2 .  9.8   .    .    .    .    . 
Turley         9 3 1 .  9.8   .    .    .    .    . 
Walters       10 2 2 4 15.3  1.2   .    .  54.0  7.3 
Ward          27 1 2 2 39.1 10.7  180  6.7 78.3  8.4 
Weltman       15 1 2 2 27.2  8.2  175  7.5 69.1  8.3 
 
Note. Columns are 1=Sample size (N); 2=Gender; 3=Protocol Type; 
4=Interval Group; 5=Average Age; 6= SD Age; 7=Avgerage Height; 8= SD 
Height; 9=Average Weight; 10=SD Weight SD = standard deviation?? 
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Table B-2. VO2max Statistics 
 
  Sr. Author    1       2     3       4     5     6    7    8      9 
Aunola        47.60   6.20  48.20   6.50  .920  .958  5.1  2.49  1.81 
Babcock       31.00   7.50    .      .    .960  .980  6.8  2.10   . 
Bar-Or        30.37   9.05  31.04   9.01  .940  .969 10.2  3.08  2.21 
Boileau       48.70   5.30  49.70   6.10  .870  .930  5.4  2.81  2.13 
Boileau       44.90   6.30  46.30   6.60  .880  .936  6.7  3.06  2.24 
Brandon       62.50   6.10    .      .    .910  .953  4.0  2.53   . 
Braun         61.97   4.78  62.12   3.84  .909  .952  3.2  1.80  1.45 
Conley        22.90   6.50  23.80   6.20  .959  .979  8.0  1.80  1.30 
Cunningham 76 56.60   7.70    .      .    .760  .864  8.8  5.00   . 
Cunningham 77 56.50   7.10  54.50   6.60  .530  .693 10.7  5.81  4.71 
De Meersma    56.20   2.40  60.60   4.20  .722  .839  3.0  2.28  2.10 
De Vito       68.50   5.21  64.50   6.47  .662  .797  5.7  4.38  3.49 
Farrell       43.20   6.60    .      .    .950  .974  4.8  2.06   . 
Fielding      27.50   4.50  28.30   5.40  .750  .857 10.8  3.27  2.55 
Foster        13.10   2.00  13.40   1.80  .760  .864  9.9  1.23   .94 
Froehlicher   43.90   5.70  44.60   6.20  .851  .920  6.8  3.12  2.32 
Froehlicher   48.10   6.00  47.20   6.20  .941  .970  4.2  2.06  1.49 
Froehlicher   43.60   4.80  43.30   5.70  .620  .765  8.6  4.12  3.29 
Harrison 1    63.70   9.04  61.83   7.18  .887  .940  6.6  3.75  3.01 
Harrison 2    58.66   9.90  59.84  10.27  .955  .977  5.0  3.00  2.15 
Harrison 3    60.36   8.94  61.59  10.67  .916  .956  6.0  3.94  3.08 
Harrison 4    58.09   7.36  58.78   9.34  .898  .946  5.6  3.67  3.00 
Hazard        54.44   4.53  58.96   5.47  .769  .869  5.3  3.20  2.48 
Hazard        64.98   4.86  68.71   5.56  .786  .880  4.6  3.22  2.46 
Huhn          58.28   6.09  58.11   6.68  .960  .980  2.9  1.79  1.34 
Jackson       37.20   7.30  37.20   7.00  .660  .795 14.7  5.37  4.17 
Jackson       30.10   7.10  27.80   6.40  .855  .922 12.2  3.50  2.61 
Katch         38.90   4.60    .      .    .950  .974  3.7  1.44   . 
Kohrt         60.50   5.60    .      .    .970  .985  2.3  1.36   . 
Kohrt         57.90   5.70    .      .    .930  .964  3.6  2.10   . 
Kyle          56.90  10.00    .      .    .950  .974  5.5  3.12   . 
Laukkanen     43.50   3.50  50.20   4.90  .795  .886  4.9  2.55  2.12 
Laukkanen     43.30   3.60  47.00   4.80  .646  .785  6.3  3.21  2.61 
Laukkanen     37.20   5.60  41.90   6.70  .834  .909  8.3  3.39  2.61 
Laukkanen     36.80   5.20  38.70   5.70  .881  .937  6.7  2.58  1.91 
MacSween      50.14   8.75    .      .    .895  .945  7.8  3.90   . 
Magel         55.00   4.00  55.00   3.20  .830  .907  4.1  2.01  1.58 
McArdle       38.14   3.87  38.70   4.02  .909  .952  4.2  1.64  1.21 
Miller        59.70   6.70    .      .    .963  .981  3.0  1.81   . 
Montgomery    45.50   8.10    .      .    .907  .951  7.5  3.41   . 
Paterson      58.90   6.60  60.30   4.70  .864  .927  5.6  2.84  2.45 
Pawelcyzk     41.20  10.51  44.80   9.96  .939  .969  8.8  3.52  2.56 
Pivarnik      41.20   5.20  40.80   4.80  .870  .930  6.2  2.47  1.82 
Shaver        53.50   5.60    .      .    .920  .958  4.1  2.19   . 
Sproule       51.50   6.04    .      .    .900  .947  5.1  2.63   . 
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Table B-2. VO2max Statistics (continued) 
 
  Sr. Author    1       2     3       4     5     6    7    8      9 
Thomas        24.70   5.40  25.90   6.40  .900  .947  9.5  2.57  .98 
Turley        51.70   5.90    .      .    .905  .950  4.9  2.51   . 
Turley        46.20   6.70    .      .    .887  .940  6.7  3.09   . 
Walters       45.15   3.62  49.34   5.19  .781  .877  5.0  2.75 2.31 
Ward          53.00   9.20  53.40   9.60  .850  .919  9.1  4.95 3.65 
Weltman       63.30   4.70  65.60   6.70  .710  .830  5.2  4.01 3.34 
 
Note. Columns are 1. Average VO2max, Time 1; 2=SD VO2max, Time 1; 
3=Average VO2max, Time 2; 4=SD VO2max, Time 2; 5=Test-Retest correlation 
(rxx); 6=Intraclass Correlation (ICC); 7=Coefficient of variation (CV); 
8=Standard Error of Measurement (SEM); 9=Maximum Likelihood SEM. See 
text for definitions. 
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Appendix C 
 

Preliminary Evaluation of VO2max as a Function of Test Occasion 
 
 A set of preliminary analyses evaluated the equivalence of the 
first and second VO2max tests. The general hypothesis was that the tests 
were equivalent. This general hypothesis could be tested in the set of 
24 studies for which the mean and standard deviation were available 
for both tests. 
 
Average Scores 
 
 Average VO2max values were highly correlated (r = .984). The 
regression equation to predict the second average based on the first 
average was V2’ = 0.749 + 1.000*V1, where V2’indicates the predicted 
VO2max for the second measurement based on the first measurement. The 
standard errors for the coefficients were 1.394 and .031, 
respectively. Thus, the 95% confidence interval (CI) for the slope 
included 1.00 (CI = 0.939, 1.061). The 95% CI for the intercept 
included 0.00 (CI = -1.98, 3.47). The average VO2max was higher for the 
first test than for the second test in 18 of 24 samples. However, the 
differences were uniformly small. The weighted average was 44.19 ml·kg-
1·min-1 for the first test and 43.45 ml·kg-1·min-1 for the second test. 
The difference was too small to be significant in every individual 
sample (│t│ < 1.29). The difference was not even significant when 
pooled across samples (Z = -1.05, p > .293, method of adding ts; cf. 
Rosenthal, 1978). 
 
Standard Deviations 
 
 The sample estimates of the standard deviation were stable (r = 
.89). The regression to predict the standard deviation for the first 
test was S2’ = 1.420 + 0.802*S1. The standard errors were 0.498 and 
0.070, respectively. The 95% CI for the slope approached, but did not 
reach 1.00 (CI = .665, .939). The 95% CI for the intercept did not 
include 0.00 (CI = .444, 2.396). However, these results may be related 
to the fact that regression models assume that the predictor variable 
is measured without error. The confirmatory factor analysis (CFA) 
results clearly indicated that SEM was invariant across test 
occasions. 
 
Confirmatory Factor Analysis (CFA) Models 
 

LISREL 8.5 (Joreskog & Sorbom, 1996) was used to fit CFA models 
that tested 2 important hypotheses regarding the standard deviations. 
The CFA models treated each VO2max test as an indicator of a single 
VO2max latent trait. The model constrained the factor loading to be the 
same for both tests. This constraint embodied the assumption that a 
person’s true VO2max did not change between test sessions. If so, the  
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Table C-1. Comparison of CFA Models 
 
                                                            Crit 
  Model         df     χ2       Sig.   RMSEA p(close) NNFI   N   SRMR 
Invariant 47 118.38 .0000 .296 .214 .944 264 .321 
Mode Specific 45 84.83 .0004 .226 .315 .958 311 .309 
Sample Specific 24 23.79 .4738 .000 .532 .997 697 .278 
 
Note. df = degrees of freedom; RMSEA = root mean-square error of 
approximation (Steiger, 1990); NNFI = non-normed fit index (Bentler & 
Bonett, 1980); Crit N = critical N (Hoelter, 1983); SRMR = 
standardized root mean-square residual (Joreskog & Sorbom, 1996). 
 
 
true score variance for the sample would be unchanged. The factor 
loadings are indicators of this true score variance, so it follows 
that they would be unchanged. 
 

Alternative models were defined by imposing constraints on the 
standard errors. Every model imposed the constraint that SEM was the 
same for both tests within each sample. Different models were obtained 
by varying whether equality constraints were imposed across samples. 
The broadest constraint assumed that SEM was constant across all 
studies. A second model assumed that SEM differed between exercise 
modes, but was constant within modes. A third model assumed that each 
study produced a unique SEM that was constant across test sessions for 
that sample. 

 
 The LISREL analysis was limited to the 24 studies with standard 
deviation data for both tests. One model constrained the error to be 
the same across all tests (invariant). One model constrained the error 
to be the same within exercise mode (mode specific). One model 
permitted a distinct error for each sample (sample specific).  
 
 All 3 models were acceptable by several criteria (Table C-1). The 
p(close) values indicated that each model was within chance of the 
recommended RMSEA = .05 value. All 3 NNFI values exceeded .900. All 3 
critical Ns exceeded 200. 
 
 Criteria that differed between models generally favored the 
sample-specific model. First, the overall χ2 decreased significantly 
moving from the invariant model to the group-specific model (χ2 = 
33.55, 2 df, p < .001) and then from the group-specific model to the 
sample-specific (χ2 = 61.04, 21 df, p < .001). Second, the sample-
specific model was the only one for which the overall χ2 was 
nonsignificant. Third, the RMSEA estimate for the sample-specific 
model was .000. Fourth, the critical N sample-specific was more than 
twice as large as that for the group-specific model. Finally, the SRMR 
was smallest for the sample-specific model. However, if parsimony 
adjustments had been introduced the NNFI for the sample-specific model 
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would have been substantially lower than that for the other two 
models.  
 
 The CFA led to 2 primary conclusions. First, SEM can be regarded 
as invariant across tests. This result means that analysis of the SEM 
for the first test is a reasonable basis for inferences about test 
errors. Second, SEM varies from sample to sample. This inference is 
supported by the general improvement in model fit when the sample-
specific model is compared with the alternatives. The other models 
would be adequate by accepted modeling standards and could be 
preferred for their parsimony (Mulaik et al., 1989). However, an 
erroneous inference about the existence of sample-specific values for 
SEM should not cause problems. This review attempts to identify 
factors that affect SEM. If the sample-to-sample variation is truly 
the result of chance, there should be only a few chance associations 
between SEM and potential predictors. The modeling attempts should 
reinforce the inference that SEM differences are chance.  
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Appendix D 
 

Using SEM to Correct Effect Size Estimates 
  

VO2max SEM estimates can be used to assess the effects of 
measurement error on estimates of associations between VO2max and other 
variables. For example, the correlation between two variables, x and 
y, is  

 
rxy = Cxy/(Sx*Sy)1/2     (Equation D-1) 

 
Given the usual assumption that errors are uncorrelated, Cxy, the 
covariance of x and y, is determined entirely by the correspondence 
between true scores. Sx, the standard deviation of x, and Sy, the 
standard deviation of y, are composites of true score and error 
variance.  
 

SEM can be used to correct effect size estimates because 
eliminating measurement error does not affect Cxy. This parameter is 
not affected because SEM, by definition, does not contribute to Cxy. 
However, eliminating measurement error does reduce Sx and/or Sx. The 
elimination of measurement error increases rxy because the denominator 
of Equation 3 is reduced while the numerator remains constant.  
 

SEM estimates can be used to correct for attenuation due to 
measurement error. The first step in using SEM estimates true score 
variance, SDt, by computing S’ = √(S2 – SEM2). An SEM estimate based on 
Equation 2 can be used for this computation. Substituting S’ into 
Equation 3 then provides an adjusted estimate of rxy.  

 
To illustrate the correction process, consider the association of 

running performance with VO2max. The expected association would be r = 
.82 with an associated SD = 6.2 for VO2max (Vickers, 2001a, 2001b). 
Adopting Equation 2b as a robust estimate of the relationship between 
SEM and average VO2max, SEM = 2.7 at 50 ml·kg-1·min-1. The estimated true 
score variance is S’ = 5.6 ml·kg-1·min-1. If VO2max is the y variable, 
the denominator for Equation 3, Sx*Sy’, is 10% smaller than the 
original denominator, Sx*Sy. Cxy remains constant, so the smaller 
denominator increases the estimated run time-VO2max correlation 
increases to r = .91. Although this illustration involves a 
correlation coefficient, the general approach extends to most common 
measures of effect size because effect size indicators generally can 
be converted into correlations (Hedges & Olkin, 1985). 

 
The correction procedure illustrated above is equivalent to 

applying a well-known equation to correct for attenuation due to 
measurement error. The equation is based on rxx, but the equivalence 
follows from the relationships between rxx, SDt, and SEM (cf., Nunnally 
& Bernstein, 1994, pp. 260-262). 
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